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Abstract

Work during this period has been concerned with two aspects: 1)

control of traveling waves in structures and 2) further developments in

the control of distributed structures.

In modal control of traveling waves, the question can be raised

whether actuator forces at points removed from a given disturbance can

begin working before the arrival of the disturbance. This question is

prompted by the fact that modal forces begin acting at t = 0. However,

the modal forces are not the actual forces, although the actual actuator

forces are linear combinations of the modal forces. It is demonstrated

that these combinations are such that the control forces tend to

concentrate in the immediate vicinity of the disturbance and tend to

vanish at points removed from the disturbance (Ref. 1).

One problem in the control of distributed structures is that

control implementation must be carried out by discrete actuators. In

using direct feedback, whereby the sensors and actuators are collocated

and the actuator input depends only on the sensor output at the same

location, asymptotic stability can be virtually guaranteed. Problems

arise when one desires to place the closed-loop poles. It appears that

there is some incompatibility between direct feedback and pole place-

ment. In particular, in placing the poles for a number of controlled

modes, the possibility of destabilizing uncontrolled modes exists,(Ref.

2). This problem arises from the insistence on placing the poles Li

associated with the controlled modes and would not arise in direct

feedback alone, i.e., without specifying the location of the poles in .....................
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CONTROL OF TRAVELING WAVES IN FLEXIBLE STRUCTURES*

by

L. Meirovitch and J. K. Bennighof

Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

SUMMARY

This paper is concerned with the control of a traveling wave in a

structure by the independent modal-space control method. It is demon-

strated that the control forces tend to concentrate in the immediate

vicinity of the disturbance, and there are virtually no control forces

acting at any point of the structure before the arrival of the

disturbance. Two numerical examples are included, one for a string ir

transverse vibration and one for a beam in bending. Satisfactory

control was achieved in spite of the fact that only a finite number of

modes was retained for control.

1. INTRODUCTION

Modal control implies controlling the motion of a flexible

structure by controlling its modes. To carry out the control task, it

is necessary first to derive the modal equations of motion, design the

* Supported in part by the AFOSR Research Grant 83-0017.
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modal control forces and finally synthesize the actuator forces from the

modal control forces by means of a linear transformation 11.

Because the modes of vibration of a structure form a complete set,

a disturbance in the structure can be described to any degree of

accuracy by a linear combination of these modes by merely increasing the

number of terms [2]. Modal control amounts to determining and

implementing modal control forces designed to suppress the modes

excited. But, the modes of a structure are global functions, i.e., they

are defined over the entire domain of the structure. Moreover, any

given modal control force is only an abstract force, translating into an

actual force distributed over the entire domain and having the shape of

the mode in question multiplied by the mass distribution. However,

distributed control implies an infinite-dimensional controller, so that

practical considerations dictate implementation of modal control by a

finite-dimensional controller. This, in turn, implies controlling a

finite number of modes only, raising questions on the effect of modal

truncation on the performance of modal control.

In structures likely to exhibit disturbances in the form of

traveling waves, which tend to be localized in nature, the question can

be raised as to the suitability of representing local disturbances by a

finite number of modes, and more importantly of controlling such

disturbances by a finite number of modal control forces. In particular,

if the control is to be implemented by a finite number of actuators

located throughout the structure, the question can be raised whether

these actuators will start workng in certain parts of the structure

before the disturbance has arrived yet. On the other hand, one can

- -* ~>~A.:~> *P .0 J- A' ~ c:.V



conceive of the situation in which the actuator forces, which represent

linear combinations of all the modal control forces, combine in such a

way that they become significant only in the neighborhood of the

disturbance and tend to reduce to zero in areas removed from the

disturbance.

This paper is concerned with the control of a disturbance in the

form of a traveling wave by the independent modal-space control (IMSC)

method. It is shown that the only force actuators activated are those

in the immediate vicinity of the disturbance, and that there are

virtually no control forces acting at any point of the structure before

the arrival of the disturbance. Two numerical examples are included,

one for a string in transverse vibration and one for a beam in

bending. Satisfactory control was achieved in each case in spite of the

fact that only a relatively small number of modes were retained for

control.

2. INDEPENDENT MODAL-SPACE CONTROL

Consider a distributed parameter system whose behavior is governed

by the partial differential equation of motion [21

2
'Lu(Pt) + m(P) ) u(Plt) = f(Pt) (1)3t 

2

subject to the boundary conditions Biu(P,t) = 0, i = 1,2,..., p. Here,

L is a linear, self-adjoint differential operator of order 2p, u(P,t) is

the displacement, a function of the position P and time t, m(P) is the

distributed mass and f(P,t) is the distributed force. The Bi's are also

m m m ...



linear differential operators. The solution of the associated

eigenvalue problem consists of a denumerably infinite set of eigenvalues

Ar and the corresponding eigenfunctions r(P) (r = 1,2,...). The

eigenvalues are the squares of the natural frequencies wr of the system,

2
Ar = r and the eigenfunctions are orthogonal and can be normalized so

as to satisfy rDm(P> r(P)%s(P)dD = rs' §Dtr(P)L~s(P)dD = Arrs = 2rs

where 6 rs is the Kronecker delta.

By the expansion theorem [21, the displacement of the structure can

be expressed in terms of its modes by

u(P't) 0 r(P)ur(t) (2)

r=1

where ur(t) are the modal displacements. Using the standard approach,

we obtain the decoupled modal ordinary differential equations of motion

Ur (t) + rUr(t) = f r(t), r = 1,2.... (3)

where

fr(t) D r (P)f(P,t)dD, r = 1,2,... (4)

are the modal forces. In the independent modal-space control method

(IMSC), each modal force depends only on the corresponding modal dis-

placement and velocity [11. Hence, for linear feedback,

fr(t) = fr [Ur(t),6 r(t) ] = - grur(t) - hr(t) (5)

where gr and hr are modal control gains.

Implementation of-modal control without spillover requires a

distributed control having the expression

f(P't) = (P) r(P) fr t (6)

r=1



If the control is to be carried out by means of m discrete actuators,

the distributed control force can be written as

m
f(P,t) = J Fj(t)6(P - P.) (7)

and, from Eq. (4), each modal force is given by
m m

fr(t) = r(P)j= Fj(t)S(P - P )dD = j gJ(t)Or(PJ) (8)

Letting f be the vector of modal forces and F the vector of actual

forces, we can write

f = BF (9)

where the matrix B = [B * [¢r(P.)I is known as the modal partici-

pation matrix. We can obtain the vector of actual forces from the

vector of modal forces by writing

"F = Bf (10)

where B' is the pseudo-inverse of B. If there are as many discrete

actuators as controlled modes, then B is a square matrix. Then,

assuming that B is nonsingular, Eq. (10) reduces to

F = B'f

To generate the modal forces, we need the modal displacements and

velocities. We can extract them from the displacement and velocity

profiles using the expansion theorem

ur(t) = D M(P) r(P)u(P,t)dD
r

- (12)

Ur(t) = f M(P)¢r(P)6(P,t)dD

If we use n discrete sensors, then we can interpolate between the sensor

measurements to obtain the approximations u(P,t) and U(P,t). Then, v.e

",



compute u r(t) and r (t) by inserting u(P,t) and 6(P,t) in Eqs. (12).

Alternatively, we note that at the sensor locations Pi,

u(Pit) = r (PiOur(t) = 0T(Pi)u(t) i = 1,2,...,n (13)
r=1 ~

where oT(Pi) is the infinite-dimensional vector of eigenfunctions eval-

uated at P = Pi and u(t) is the infinite-dimensional modal vector.

Introducing the measurement vector y(t) with components yi(t) =

u(Pi, t), we can rewrite Eqs. (13) as

y(t) = 0Tu(t) (14)

Then, if we truncate the modal vector u(t) so that its dimension is

equal to the number of sonsors, we can estimate the modal displacement

vector from

u(t) = (BgT)-lIy(t) (15a)

where B is a square truncated matrix o and it represents the sensor

participation matrix. This is equivalent to using the lowest n modes tc

represent the displacement profile. Similarly, the estimated modal

velocity vector is

u (t) = (B)-1(t) (15b)

Finally, the modal equations of motion become

2r + r u = f r - h u (16)

In this paper, we use gains that minimize the performance functional

j = I f [m(P)u2 (Pt) + u(P,t)Lu(P,t) + Rf2 (Pt)IdD'dt (17)
0 D

Using the expansion theorem, the minimization can be carried out for

each mode independently resulting in the gains [11

, '.<'. .. j., v "" V . -, .. ... .-. , ,. ...- , .. ..- ........ ... . . .. . ..... ... . * .



= 2 + 2 + 1)1/2

gr - r rr R

(18)

h = [-2w + 1+ 2w2 2r+ 1/211/2
r r R rWr R

If we have damping in the system, the partial differential equation

of motion becomes

Lu(P,t) + au(Pt) 2u(P,t) f(Pt) (19)

at () at2

where C is a differential operator. If, for some constants a1 and 2'

we have

C = aIk + a2m(P) (20)

then the modal equations of motion become

r+ ( i + a2)6 + 2u = fr (21)rU ~rr r2)r r

so that the equations remain uncoupled. This special case of damping is

known as proportional damping.

3. MODAL CONTROL OF TRAVELING WAVES

In this paper, we examine the possibility of using IMSC to control

traveling waves in flexible structures. In each case, we begin with

initial conditions describing a single, localized traveling disturbance

in the structure. Because the modes of a distributed system form a set

that i complete in energy, any disturbance can be expressed as a linear

combination of the modes, provided a sufficiently large number of modes

is included. .

We consider first the wave motion in a second-order system, sich as

a string in transverse vibration, a bar in axial vibration, or a snaft

in torsional vibration. Then, we consider trave'ling waves in fourth-
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order systems, such as a beam in bending vibration. In the first case,

the waves travel through the system without changing shape; in the

second, the system is dispersive, so that the wave changes shape as it

travels. For both types of systems, we assume that there is internal

damping present in the system, and that this damping is proportional t:

the local rate of strain in the material. In each case, we consider

first the globally optimal solution to the control problem obtainel by

using distributed actuators. Although implementation of control by

means of distributed actuators may not be within the state of the art,

the globally optimal solution is valuable because it provides a

benchmark against which any other design can be measured. Then, we

consider control of the wave motion using a finite number of discrete

actuators, in which case only a limited number of the lower modes is

controlled. A comparison of the results obtained using discrete

actuators with the globally optimal solution demonstrates the

effectiveness of IMSC in controlling waves, even when only a small

number of discrete actuators is used.

i. Second-Order Systems

We consider a second-order system in the form of a string in trans-

verse vibration. Assuming that the system is undamped, the free viora-

tion is governed by the partial differential equation IRef. 31.

T u(xt)xt) 0 o (22)
x 2  at2

where u(x,t) is the transverse displacement, T is the tension and m is

the mass per unit length. Here the differential operator L is equal to



- T a2 /ax2 . It is assumed in Eq. (22) that both T and m are constant.

If the string is of infinite length, it is easy to show that the

solution of Eq. (22) can be written in the form [31

u(x,t) = FI(x - vt) + F2 (x + vt) (23)

where F1 and F2 are wave profiles traveling to the right and to the

left, respectively, with the wave velocity

v = VTI (24)

The transverse velocity is

6(x,t) = - vFi(x - vt) + JFk(x + vt) (25)

where primes denote differentiation with respect to the corresponding

arguments.

If the string is finite and fixed at both ends, then u(xt) must

satisfy the boundary conditions

u(O,t) = u(L,t) = 0 (26)

The natural frequencies are

W r = r-n/m , r = 1,2,... (27)

*and the associated normalized eigenfunctions are

4r(x) sin r = 1,2,... (28)

According to the expansion theorem, Eq. (3), the. displacement of the

string can be represented by a linear combination of the eigenfunctions

of the form. (2). Alterriatively, at ahy instant in time, the motion can

be described by Eq. (23) in terms of traveling waves, as long as the

boundary conditions are satisfied. These boundary conditions determine

how the wave is reflected at the ends of the string.

#t.
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Next, we add an external distributed force and distributed damping

that is proportional to the local strain rate, so that the partial

differential equation of motion becomes

- T au(x't) - C u(x,t) + M 2u(xt) = fix,t) (29)
ax2  ax 2at at2

where C is assumed to be constant. Because damping is of the

proportional type 121, the eigenfunctions of the damped system are the

same as the eigenfunctions of the undamped system, although the

eigenvalues are different. Hence, inserting Eq. (2) with P = x into Eq.

(29), multiplying by s (x), integrating over the length of the string

and making use of the orthogonality relations, we obtain the independent

ordinary differential equations of motion

UrM + (CW2/T)6r(t) + wrUr(t) = fr (t), r = 1,2,... (30)

where (t) 0 r(x)f(x,t) dx is the rth modal force. Here we note

that the damping factor is proportional to the natural frequency,

r = (C/2T)w r (r = 1,2,...). Hence, we expect the higher modes to decay

more rapidly than the lower modes, which is confirmed by the observed

behavior.

If the string has the initial displacement profile

* 5-.(1- Cos?), 0 !S x
u(xO) = (31)

0, xi x L

where x is the wave length, then the initial modal displacements are

u r(0) L mu(x,O)tr(x) dx 22mL - cos rx/L (32)r 0 r4 -r2 X2 /L 2
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If this initial disturbance is to travel to the right, then the trans-

verse velocity must be

- sin 0: xxsn, O~x x

u(x,O) = (33)

and the modal velocities are
L - sin rx/Ll

r (0) =f LmI6(xO) r(x) dx = 2 2TL 4 i r2w2/Li (34)

Figure 1 shows the motion of the string with the above initial

conditions and with x = O.1L. Here, eighty modes were used to model the

string. The value of C was chosen so as to give 0.1% damping in the

fundamental mode, and no control forces were applied. The effect of the

damping is to decrease the energy in the highest modes rapidly, so that

the disturbance profile loses its initial sharpness and its amplitude

decreases.

Next, we consider a distributed control force with a control effort

weighting factor of R = 0.2 in the performance index, Eq. (17). The

results are shown in Fig. 2. We observe from Fig. 2 that the control is

localized at the wave, although the control force is a linear combin-

ation of modal forces and each of the modal forces is distributed over

the entire domain. This demonstrates that IMSC can control localized

disturbances quite satisfactorily, because the control force tends to

concentrate around the disturbance and it travels with the wave.

We also observe from Fig. 2 that the optimal control force is very

nearly equal to a scalar multiple of the velocity, which is consistent

with the fact that energy dissipation is the control objective. This

control force causes the wave to essentially retain its shape as the

amplitude decreases. It turns out that we can vary the rate of decay of



the wave by varying R. In this example, we selected the value of R so

as to be able to monitor the effect of the controls on the system as the

wave travels. In general, R represents a penalty on the control and is

chosen by the analyst so as to produce desired system performance.

Figure 3 shows results obtained by using nine discrete actuators

and nineteen discrete sensors, all equally spaced, to control the lowest

nine modes of the string. The sensors measure the actual displacement

and velocity of the string at each sensor location. Then, these mea-

surements are used in conjunction with Eqs. (14) and (15) to estimate

the corresponding modal displacements and velocities. The use of more

sensors than actuators allows much of the motion due to uncontrolled

modes to be filtered out. The modal control forces are calculated from

the estimated modal displacements and velocities using the gains

prescribed by Eqs. (18) and the actual actuator forces are calculated

using Eq. (Ui). In this example, we continue to model the lowest eighty

modes, so that we expect to see residual energy in uncontrolled modes,

observation spillover from uncontrolled modes and control spillover into

uncontrolled modes, at least to some degree. Here, we still consider

the effects of damping as in the previous two cases. The use of

discrete actuators causes the wave to lose its initial smooth shape with

time, although the disturbance-can still be identified as it travels.

Examining the plot corresponding to t = 0, it is clear that, as long as

the disturbance in the system is still localized, the control force

accompanies the disturbance. Comparing the rate of energy dissipation

with the damped but uncontrolled case of Fig. 1, we observe that

controlling only the lowest nine modes increases the energy dissipaticn



substantially. In the time increment between t = 0 and t = 0.4, damping

causes a 50% loss of energy in the uncontrolled case, while the discrete

actuator controls dissipate an additional 14% by operating on the lowest

nine modes. As time progresses, the controls become essentially

inactive, indicating that motion in the lowest nine modes has been

annihilated. The strain rate damping then causes the remaining energy

to decay quickly. Hence, we conclude that the use of IMSC to control

only the lowest nine modes with discrete actuators and sensors is

effective in controlling this traveling wave.

In Fig. 4, we have plots of the modal contributions br f r(t) to the

actuator force vector F(t) at t = 0, where the vectors b r are the

columns of Bt in Eq. (10), or of B- 1 in Eq. (11). In this case, B- 1 was

used. Also, in each of these plots, we have sketched the corresponding

mode shape, to give an idea what the contributions would have been if

the actuators were distributed devices, instead of point actuators. The
m

last plot represents X brfr(t) at t = 0, which is recognized from Eq.
r=1

(9) as the actual actuator force vector F(t) at t = 0. This figure

brings out the fact that, although the modal forces are active at points

far away from the disturbance, these modal forces tend to cancel out at

these points. Hence, the actual forces, as exerted by the actuators,

tend to be concentrated in the vicinity of the disturbance.

ii. FOURTH-ORDER SYSTEMS

The motion of beams in undamped free vibration is governed by the

fourth-order partial differential equation [31

El 4u(x't) + m a 2u(xt) = 0 (35)
3x 4 at2



where El is the bending stiffness and m is the mass per unit length,

both assumed to be constant. Here, L = EI a 4/ax4 . Equation (33) admits

a solution in the form of the wave motion

u(x,t) = cos (x - Vt) (36))x

where x is the wavelength and

S= VEIl/m (37)

is the wave velocity. Hence, if a given wave profile is resolved into

sinusoidal components by Fourier analysis, each wave component will

travel with a different velocity. It follows that the wave profile

changes shape as it travels, so that the beam is dispersive 131.

If the beam is of length L with pinned ends, then the displacement

must satisfy the boundary conditions

u(O,t) = u(L,t) = a2u(Ot) = 2 u(Lt) = o (38)
ax2  ax2

The natural frequencies are

W = (ri) E/L r 1,2,... (39)m4niL4

and the associated normalized eigenfunctions are the same as for the

string, Eq. (28).

In the presence of distributed damping proportional to the localj

strain rate and a distributed control force, the partial differential

equation of motion becomes 141

El 24u(xt) + C a5u(x't) + m a2u(xt) f(x,t) (40)

ax 4  ax4at at2

where C is the damping coefficient. The modal equations of motion can

be obtained by the same approach as for the string, and the equations

, , ;',, ', '. ' '. '. -.,.,- ***. w .. .-. -, -. ......-.,.-..



are identical to Eqs. (30). However, in this case the damping factor

for each mode is proportional to the square of the mode number, because

it is still proportional to the natural frequency. Hence, for a beam

with strain rate damping, the higher modes decay much faster than the

lower modes.

We propose to control traveling waves on this pinned-pinned beam.

To this end, we assume that the initial conditions are such as to

produce a traveling wave. For a given initial displacement profile

producing a wave traveling to the right, the velocity profile is not as

easy to obtain as for the string, because waves of different wavelengths

travel with different velocities along the beam. We can determine the

velocity profile for a given displacement profile by finding the sinu-

soidal components of the displacement profile and stipulating that each

component travels with its own velocity, depending on the wavelength

(see Eq. (37)), and that all components travel in the same direction.

If a disturbance profile has zero amplitude at the boundaries, the beam

can be regarded as being infinite. Hence, we consider an infinite beam

and denote the coordinate along the length of the beam by y. If the

wave profile is initially even in y and is denoted by u(y,O), upon

takingthe Fourier transform and then the inverse Fourier transform of

the wave profile we have

u(y,O) = - f [u(y, 0 ) cos wy dy] cos wy dw (41)

70 '0

For a beam of stiffness El and mass m, a wave component of the form

u(y,t) = cos W(y - vt) (42)



travels with the wave velocity v = wvE/r. If all wave components are

traveling to the right, then we have

u(y,t) = 2 * ff u(y,O) cos wy dy? cos w(y - vt)dw (43)
W0 0

and hence

u(y,0) = 2/El/m ; Mj[f mMu(y,O) cos wy dy] w2 sin wy dw (44)
T 0 0

We choose a wave profile even in y and defined for positive y by

u(y,O) = x x 2 (45)
3, y 2

Then, upon carrying out the integrations in Eq. (44), we obtain

_ ______ ~I?\-(?y)2]2
6(y,0) -. 24 /Et/ - 2F 1 + 4(?I~'L (?xx

+ [1+ 3(~2~ tn j x (46)

and we observe from Eq. (44) that 6'(y,O) must be odd in y. Because

6(y,O) approaches zero asymptotically, we start the wave at the center

of the beam, so that the boundary conditions (38) are largely satisfied.

Hence,'to describe the transformation from x to y, we let y = x - 1/2.

Once again we choose a beam of unit length, mass, and stiffness

with x = 0..1 and the Ctamping constantC so as to produce about O.1

damping in the lowest mode. Again, we are modeling eighty modes to

represent the motion of the beam. Figure 5 shows the uncontrolled

motion of the beam with the initial conditions described earlier. In

4'
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the time increment between t = 0 and t = 0.004, we notice that over 98%

of the energy disappears as the higher modes decay rapidly. Also, the

dispersive nature of the beam becomes obvious by observing how the wave

spreads out as it travels. The dispersion is more obvious in the

absence of damping, because a number of wavelets break away instantly

ahead of the wave. We observe that, because of this dispersion, the

traveling wave quickly becomes much less localized and with only a small

amount of damping it has the appearance of a beam vibrating in several

of its lowest modes.

In Fig. 6, we use distributed actuators to control all eighty of

the modeled modes with R = 0.0005. Here again we observe that the

globally optimal control is localized at the wave and is nearly a scalar

multiple of the velocity.

In Fig. 7, nineteen sensors and nine actuators are again used to

control the wave, as in the case of the string. Again, R 0.0005. If

we compare the controlled displacement and velocity profiles in Fig. 7

with those in Fig. 3, where discrete sensors and actuators are used to

control the string, we observe that the beam profiles are much smoother,

indicating less participation of the higher modes. This is because

there is less control spillover into the higher modes due to the

stiffness of the beam. Also, because the higher modes decay so much

faster, control spillover into the higher modes is dissipated rapidly.

In essence, the beam acts like a low-pass filter.

Comparing the rate of energy dissipation when discrete actuators

are used with the uncontrolled case, it is clear that IMSC is effective

in controlling the wave, even in time intervals so short that the wave

Sr*. * .* .r ....- --.. -' * *. 
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has traveled only a short distance. Again we notice that the actuators

are only active in the immediate vicinity of the disturbance.

4. CONCLUSIONS

The numerical examples presented here demonstrate the effectiveness

of IMSC in controlling traveling waves in structures governed by second-

and fourth-order partial differential equations, in spite of the fact

that only a limited number of actuators were used. In general, a great

deal of higher-mode participation is needed to describe a highly

localized disturbance, but, as shown here, a small amount of material

damping dissipates a great deal of the energy in the higher modes, even

when the lower modes have negligible damping. Note that the traveling

single wave is not an ordinary occurrence, as it takes an unusual

excitation to produce it. It was used here for the purpose of

investigating the control force distribution in the case of a

disturbance in the form of a traveling wave. As demonstrated, the

control tends to be concentrated in the vicinity of the disturbance, and

there is no significant control action in areas where there is no

disturbance.
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Abstract: Control of structures can be carried out conveniently by

modal control, whereby the structure is controlled by controlling its

modes. Modal control requires estimation of the modal states for feed-

back, which can present a problem. One approach that does not require

modal state estimation is direct feedback control, which implies

collocated sensors and actuators. This paper examines some problems

encountered in direct feedback control of distributed structures in

conjunction with pole placement. A perturbation technique permits the

computation of control gains for multi-input systems. The paper demon-

strates that the difficulties experienced in using direct feedback in

conjunction with pole placement are endemic to the approach.

Key Words. distributed structures, modal control, direct feedback

control, collocated sensors and actuators, pole placement, perturbation

technique.
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1. INTRODUCTION

Structures represent distributed-parameter systems, described by

partial differential equations (Ref. 1). In some form or another,

control of structures is carried out by modal control, whereby the

structure is controlled by controlling its modes. Control of the entire

infinity of modes requires in general a distributed actuator and a

distributed sensor. If the control is such that the modes are coupled,

then determination of the control gains is not possible. However, a

solution is possible if the modes are controlled independently. Indeed,

the independent modal-space control method is able to produce a globally

optimal solution by preserving the independence of the modal equations

(Ref. 2). It is shown in Ref. 2 that the optimal independent modal-

space control can be implemented approximately by means of discrete

sensors and actuators.

Modal control requires estimation of the modal states for feedback.

This can present a problem, particularly for two- and three-dimensional

structures. One approach that does not require modal state estimation

is direct feedback control, whereby the control is carried out by

collocated sensors and actuators. Direct feedback implies a gain matrix

consisting of two diagonal submatrices, one for displacement and the

other for velocity feedback. The fact that the off-diagonal gains are

zero can be regarded as placing constraints on the controls. As a

result determination of control gains by pole allocation or by optimal

control experiences difficulties.

This paper examines some of the problems encountered in the control

of distributed structures, concentrating on the problem of using direct

feedback control in conjunction with pole placement. A perturbation
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technique permits the computation of control gains for multi-input

control. The paper demonstrates that difficulties experienced in using

direct feedback in conjunction with pole placement to control distri-

buted structures are endemic to the approach and are not merely

mathematical in nature. The difficulties can be attributed to the

insistence on selecting the closed-loop poles in advance, as no problem

exists if the control gains are selected first and the closed-loop

eigenvalues are computed later.

2. MODAL EQUATIONS

We are concerned with the problem of controlling a distributed

structure whose behavior is governed by the partial differential

equation (pde) (Ref. 1)

4w(Pt) + m(P)w(Pt) = f(Pt), PCD (1)

where w(P,t) is the displacement of a typical point P inside domain D

and at time t, 4 is a homogeneous, self-adjoint, positive definite

differential operator, referred to as stiffness operator, m(P) is the

mass density and f(P,t) is a distributed control force. The

displacement w(P,t) is subject to given boundary conditions to be

satisfied at every point of the boundary S of 0.

*The open-loop eigenvalue problem has the form

L,(P) = 2m(P)O(P), PEO (2)

where ¢(P) is subject to given boundary conditions. The solution of Eq.

(2) consists of a denum~rably infinite set of eigenvalues wr, where w

are the natural frequencies, and associated eigenfunctions or (r = 1,

2,...). The eigenfunctions are orthogonal and can be normalized so that

(¢s'mor) = rs' (0 ) = 2 r,s = 1,2,... (3a,h)

s s s r r rs'
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where ( , ) denotes an inner product. Using the expansion theorem (Ref.

1), the displacement w(P,t) can be expressed as the linear combination

W

w(Pt) = X 1r(P)qr(t) (4)
r=1

where q r(t) (r = 1,2,...) are generalized coordinates ordinarily known

as modal coordinates. Similarly, we can expand the distributed force

f(P,t) in the series

Wf(P't) I m(P) r (P)f r(t)  (5a)

r=1
where

f r(t) = (r (P),f(P,t)), r = 1,2,... (5b)

are known as modal forces. Then, inserting Eqs. (4) and (5) into Eq.
(1), multiplying through by s(P), integrating over the domain D and

considering Eqs. (3), we obtain the modal equations

2q r(t) + w rq r(t) = f r(t), r = 1,2,.... (6)

We refer to control of a distributed structure by using Eqs. (6) to

control the modes of the structure as modal control.

3. MODE CONTROLLABILITY AND OBSERVABILITY

It will prove convenient to cast the modal equations in state form.

To this end, we define the rth modal state vector x r(t) = [q r(t) r (t)]T

Then, adjoining the identities r(t) = r(t) (r = 1,2,...). Eqs. (6) can

be written in the state form

Sr(t) = Arxr(t) + Br f r(t), r = 1,2,... (7)

where °
Ar = 2 1 Br = , r = 1,2,... (8a,b)

u
r

are coefficient matrices. Next, we define the modal controllability

matrix

5
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Cr =[Br ArrJ = j] r =1,2,... (9)

and state that the distributed system is modal-state controllable if and

only if each and every controllability matrix Cr is of full rank 2,

which is clearly the case. This, of course, implies that each and every

modal control fr(t) is nonzero, in which case the application of the

controllability criterion is a trival formality. Note that an infinity

of modal controls fr(t) is tantamount to an actual distributed control

function f(P,t), as indicated by Eq. (5a).

Next, we assume that the modal states are related to the modal

measurements Yr(t) by

Yr(t) = C xr(t), r = 1,2,... (10)

T
where in the case of displacement measurements CT = (I Of and in the

case of velocity measurements Cr = [0 11. The modal observability

matrix is defined as

0 = [r A TCr 1 r = 1,2,... (11)

and it permits us to state that the distribued system is modal-state

observable if and only if each and every observability matrix 0 r is of

full rank 2. For displacement measurements

'r = 0 , r = 1,2,... (12a)

and. for velocity measurements

0r = , r 1,2,... (12b)

so that the system is in general observable with either displacement

measurements or velocity measurements. Notable exceptions are sex

6



definite systems, which admit rigid-body modes with zero eigenvalues.

Indeed, semidefinite systems are not observable with velocity measure-

ments alone. Note that an infinity of modal displacement or modal

velocity observations implies distributed displacement measurement

w(P,t) or distributed velocity measurement w(P,t), respectively.

4. FEEDBACK CONTROL

Let us consider the distributed linear feedback control

f(P,t) = - 5(P)w(P,t) - X(P)w(P,t) (13)

where S(P) and f(P) are control gain operators. Inserting Eq. (13) into

Eq. (1), we obtain the closed-loop pde

(*w(P,t) +,V(P)w(P,t) + m(P)w(P,t) = 0, PED (14)

where

L* = + (15)

is a closed-loop stiffness operator. Retracing the steps leading from

Eq. (1) to Eqs. (6), we obtain the closed-loop modal equations, which

can be written in the compact form

q(t) + Hc(t) + (A + G)q(t) = 0 (16)

where q(t) is the infinite-dimensional modal configuration vector, A is

the infinite-order diagonal matrix of eigenvalues and G and H are square

control gain matrices of infinite order with entries given by

gsr -s r ), hsr = (s , r ), r,s = 1,2,... (17a,b)

In the general case, the matrices G and H are not diagonal, so that

the effect of feedback control is to couple the modal equations.

Physically, the term gsrqr(t) implies a generalized spring force and the

term h srr (t) a generalized damping force. Hence, the fact that the

matrices G and H are not diagonal implies that the feedback control pro-

vides nonproportional stiffness and damping (Ref. I), respectively. Wt
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refer to the case in which G and H are not diagonal as coupled modal

control. Note that in this case the matrices G and H may not be even

symmetric.

Before the behavior of the closed-loop system can be established,

it is necessary to determine the gain operators 5 and X or the gains

matrices G and H. However, there are no algorithms capable of producing

the operators 5 and ae or the infinite-order matrices G and H. Hence,

distributed feedback control realized through coupled modal control is

not possible.

Next, we introduce the 2- -dimensional modal state vector x(t) =
[qT(t); qT(t)lT, so that Eq. (16) can be rewritten in the state form

i(t) = Ax(t) (18)

where

A0 1 L (19)
+ G) I -H

in which n diag [wr I. The problem of determining the control gain
r

matrices G and H remains. In this regard, one can consider pole alloca-

tion and optimal control. In the pole allocation method, the problem

reduces to the solution of a set of nonlinear algebraic equations (Ref.

3), which is not feasible for infinite-dimensional systems. Similarly,

for optimal control using a quadratic performance index, one is faced

with t'he solution of a matrix Riccati equation of order 2-, which is not

possible.

5. INDEPENDENT MODAL-SPACE CONTROL

There is one special case in which distributed feedback control is

possible, namely the one in which the opera~ors & and ae satisfy the

eigenvalue problems

8
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Sor(P) = grm(P)Or(P),(P) = hrm(P)Or (P), r = 1,2,... (20a,b)

which imply that 5 and XC are such that

(s 950
r ) = grars, (s r) = h r rs' r,s = 1,2,... (21a,b)

In this case the closed-loop modal equations reduce to the independent

set

q s(t) + h ss(t) + (xs + gs)q s(t) = 0, s = 1,2,... (22)

Because of the independence of the closed-loop modal equations, this

type of control is called independent modal-space control (IMSC). It is

characterized by modal control forces of the form

fs (t) = - gsq (t) - h ss (t), s = 1,2,... (23)

In open-loop response problems, the coordinates qs(t) crrresponding

to independent equations of motion are called natural. Because IMSC

guarantees the independence of the closed-loop equations, we refer to

IMSC as natural control.

The fact that both the open-loop and closed-loop modal equations

are independent has very important implications. Indeed, this implies

that the open-loop eigenfunctions s are closed-loop eigenfunctions as

well. Hence, in natural control, the control effort is directed

entirely to altering the eigenvalues leaving the eigenfunctions

unaltered. In this regard, it should be recalled that the stability of

a lingar system is determined by the system eigenvalues, with the

eigenfunctions playing no role, so that in natural control no control

effort is used unnecessarily.

The question remains as to how to determine the modal gains gs and

hs (s = 1,2,...). Two of the most widely used techniques are pole

allocation and optimal control:

9



i. Pole allocation

In the pole allocation method, the closed-loop poles are selected

in advance and the gains are determined so as to produce these poles.

In the IMSC, the procedure is exceedingly simple. Denoting the closed-

loop eigenvalue associated with the sth mode by -as + iBs, the solution

of Eqs. (22) can be written as

r (-cS + iBs)t

qs(t) = cSe , S = 1,2,... (24)

Inserting Eqs. (24) into Eqs. (22) and separating the real and imaginary

parts, we obtain the modal gains

g a 2 + 2 - X , hs = 2 s  s = 1,2,... (25)
s +  s

To guarantee asymptotic stability, however, it is only necessary to

impart the open-loop eigenvalues some negative real part and it is not

necessary to alter the frequencies. This can be achieved by letting

B = = s ( s = 1,2,...), where, ws is the sth natural frequency of

the open-loop system. Hence, the frequency-preserving control gains are

gs = 2' hs = 2as. s = 1,2,... (26)

ii. Optimal control

In optimal control, the closed-loop poles are determined by

minimizing a given performance index. Consistent with previous

developments, we are interested in constant gains and, to this end, we

consider the performance functional

' = 0 [(w,mw) + (w,Lw) + (f,rf)Idt (27)

where the various quantities are as defined in Eq. (1), except for r =

r(P) which is a weighting function assumed to satisfy (Ref. 2)

(frf) R Rf2 (28)
r 1

where Rr are modal weights. Inserting Eqs. (4) and (28) into Eq. (27)

and recalling Eqs. (3), we obtain

10
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= r (29a)

r=1

where
= 10 (- + r+ Rrf )dt, r = 1,2,... (2)

are modal performance indices. Because in IMSC the modal control fr is

independent of any other modal control, it follows that

min J = min Jr min J (30)
r=l r=l r

so that the minimization can be carried out independently for each mode.

The minimization of Jr leads to a 2M2 matrix Riccati equation that

can be solved in closed form (Ref. 4), yielding the modal control gains

2 + 2 11/2gr =  r r(r + r
= rCr+R , r = 1,2,... (31)

hr [ 2m + Rr1 + 2w ( 2 + R
4 )1/2J1/2

rr r r r r

Because no constraint has been imposed on the control function f =

f(P,t), the solution defined by Eqs. (5), (23) and (31) is globally

optimal, and is unique because the solution to the linear optimal

control problem is unique (Ref. 5).

It should be pointed out that the solution presented above requires

distributed sensors and actuators. Indeed, inserting Eqs. (23) into Eq.

(5a), we obtain the distributed feedback control force

f(Pt) - ) m(P) r(P)gr q r(t) + h rr(t)] (32)

r=l rr

Equation (32) indicates.that control implementation requires the ertire

infinity of modal displacements qr(t) and modal velocities q (t)

(r = 1,2,...) for feedback. This, in turn, implies a distributed

sensor. Note that, inserting Eq. (4) into Eq. (13) and comparing tho

results with Eq. (32), we can verify Eqs. (20). At this point, we

b10
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observe that the gain operators and W are never determined explicitly,

nor is it necessary to do so, as the determination of the modal gains gr

and hr (r = 1,2,...) is sufficient to produce the feedback control

density function f(P,t).

6. CONTROL BY POINT ACTUATORS

As pointed out in Sec. 5, globally optimal control of a distributed

structure requires a distributed actuator. On the assumption that

distributed actuation is not feasible, we seek control by means of a

finite number p of discrete actuators acting at the points P = Pi (i =

1,2,...,p) of the structure. Discrete actuators can be treated as

distributed by writing

P
f(P,t) = Fi(t)6(P - Pi), PeD (33)

i1

where Fi(t) are force amplitudes and s(P - Pi) are spatial Dirac delta

functions. Introducing Eq. (33) into Eq. (5b), we obtain the relation

between the modal forces and the actuator forces in the form

p p
fr (t) r (P),f(P,t)) = Fi(t) fD(r(P)6(P - Pi)dD O ilr(Pi)Fi(t),

= i=

r = 1,2,... (34)

which can be written in the compact form

f(t) = oF(t) (35)

where f(t) is the infinite-dimensional modal vector, o is the --p modal

participation matrix "nd P(t) is the p-vector of actuator forces.

Considering the feedback control

F(t) = -Gq(t) - H4(t) (36)

where this time G and H are py- control gain matrices, the closed-loop

state equations can once again be written in the form (18), but this



time the coefficient matrix is

A 0
------ I 

(7

(+ oG) -oH

The difficulties cited in Sec. 4 in conjunction with the determination

of the gain matrices G and H remain. Some of these difficulties can be

reduced by controlling a finite number of modes. This raises the

question of control spillover into the uncontrolled modes (Ref. 6),

particularly if the number of controlled modes is small.

7. DIRECT FEEDBACK CONTROL

One problem that can prove troublesome in modal control is the

estimation of the modal states for feedback. To this end, one can

consider a Luenberger observer (Ref. 7), but the question of observation

spillover is potentially more serious than the problem of control

spillover, as it can lead to instability (Ref. 6). Hence, a procedure

not requiring modal state estimation appears desirable.

One approach not requiring modal state estimation is direct

feedback control, whereby the sensors are collocated with the actuators

and a given actuator force is a linear function of the sensor output at

the same point. We consider p discrete actuators acting at the points

P = Pi (i = 1,2,...,p), where the force amplitudes are

F(t) = -giw(Pi,t) - h.i(Pit), i = 1,2,... ,p (38)

in which gi and hi (i = 1,2,...,p) are actual control gains. Clearly,

the gains must be positive. As before, the discrete actuators can be

regarded as distributed by writing

p

f(Pt) = - Z [giw(P,t) + hiw(P,t)I6(P - Pi), PcD (39)

13

. s



To make the connection with Eq. (13), we can regard 5 and X as operators

having the expressions

P P
S(P) = ) gi6(P- Pi),(P) hiS(P - Pi), PED (40a,b)

i=1 1=1

so that, inserting Eqs. (40) into Eqs. (17), we obtain the entries of

the control gain matrices G and H in the explicit form

p p

gsr = iZ= g ios5(Pi)or(P
i), hsr = ishis(Pi)4r(Pi), r,s, = 1,2,...(41a,b)

The state equations remain in the form (18) and the coefficient matrix A

remains in the form (19).

Once again the problem is that of determining the control gains.

The problem is different here because there is only a finite number of

gains gi and hi (i = 1,2,...,p) and the system is infinite-dimensional.

There is no computational algorithm permitting the computation of the

control gains in conjunction with either pole allocation or optimal

control, so that one must consider modal truncation. Even for the

truncated model, the situation remains questionable. The reason for

this is that pole allocation and optimal control most likely will

require gain matrices with entries independent of each other while

direct feedback control implies that the entries of G and H are not

independent, as can be see from Eqs. (41). In fact, there is some

question whether arbitrary pole placement is possible for direct

feedback control. Moreover, because the entries of G and H are not

independent, there is some question whether optimal control is possible

in the presence of constraints on the control gains.
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8. A PERTURBATION APPROACH TO POLE ALLOCATION FOR DIRECT FEEDBACK

Application of the pole allocation method to multi-input control

can cause serious difficulties. Moreover, the method is suitable for

discrete systems only. In this section, we present an approach suitable

for distributed systems, and in the process we reveal some limitations

of the pole allocation method.

The eigenvalue problem corresponding to the closed-loop equation,

Eq. (18), is

Au = xu (42)

where A is given by Eq. (19). We propose to determine the control gains

by a perturbation approach. To this end, we assume that A can be

expressed in the form

A = A0 + A1  (43)

where

Ao _ _ ] A1 [0 t ] (44a,b)

21,

in which A1 is "small" relative to A0 in some sense, so that the open-

loop matrix A0 represents the unperturbed coefficient matrix and A, is

the perturbation due to closing of the loop.

The zero-order eigenvalue problem, i.e., the unperturbed open-loop

eigenValue problem is characterized by the eigenvalues xOj = iw.

(j = 1,2,...), where i = §1 and wj are the natural frequencies, and by

the right and left eigeivectors

YOj. 'j v O 2j -( /j 1,2,... (45a,b)
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in which e. is a standard unit vector. The two sets of eigenvectors

satisfy the biorthonormality relations v = A = TAj 6~UK~Uj =jk' Yo k0o0o i. jk

(j,k = 1,2,...). Equations (45) specify only one half of the right and

left eigenvectors. The other half consists of the complex conjugates u0

and voj corresponding to the eigenvalue -iwj. Then, the first-order

perturbation solution of Eq. (42) can be expressed as (Ref. 8)

Ix= O X l: imj+ ' j  + +  l j J = 1,2, ... (46a,b)

where

X Au k=(AOj - xOk) Ok' j = 1,2,...; k * j (47a,b)

Inserting Eqs. (45) into Eq. (47a), we obtain

= e T (G + iwH)eT, j = 1,2,... (48)

so that p

Re - 1 Te- 1 h - 1 hiOj(Pi), j = 1,2,... (49a)
e j =  - - - 2 h ij 2 i1 1

p
11 TIm - = = - i gio,(Pi), j = 1,2,... (49b)

Im J 2--j Z 3 -j 1gJJ 2 I

Introducing the notation

X = - ai. + iA j , w (Pi) = bji (50a,b)

Eqs. (49) can be rewritten as

P P

1il bjihi = 2aj, i. 1 b jig i = 2wjAwj, j 1,2,... (51a,b)

Equations (51) represent two infinite sets of algebraic equations.

Because the two sets are similar in nature, we confine our discussion to

Eqs. (51a). We note from Eqs. (50b) that all bji (i = 1,2,.. .,p; j =

1,2,...) are positive. If the gains hi (i = 1,2,...,p) are selected in

advance, and if we recall that they must be positive, we conclude that

16



all cj(j = 1,2,...) are positive, which guarantees that, to the first

approximation, direct feedback leads to asymptotic stability.

In pole placement, however, the closed-loop poles rather than the

gains are selected in advance. If all the poles are to be placed, which

implies that all cj(j = 1,2,...) must be selected in advance, then Eqs.

(51a) represent an infinite set of equations and p unknowns, namely hi

(i = 1,2,...,p). Clearly, no solution is possible, so that we consider

placing only a finite number of poles. Physically, this presents no

problem as higher modes are seldom excited. In general, the object is

to place a larger number of poles than the number p of actuators.

Hence, let us assume that we wish to place the first n poles, n p, and

write Eqs. (51a) in the matrix form

Bh = 2a (52)

where B is an nxp matrix, h is the p-dimensional gain vector and a is

the n-dimensional vector of preselected pole shifts along the real axis.

A least-squares solution of Eq. (52) yields

h = 2Bt x, B = (BTB)-IBT (53a,b)

where B' is the pseudo-inverse of B. Then, the shifts of the remaining

poles along the real axis can be obtained from Eqs. (51a) corresponding

to j = n + 1, n + 2,.... For stability, ajx(j = n + 1, n + 2,...) must

all be nonnegative.

The fact that all aj (j = n + 1, n + 2,...) must be nonnegative

implies that all the gains hi (i = 1,2,...,p) must be positive. Indeed,

if some hi are negative, then the left sides of Eqs. (51a) corresponding

to j > n represent indefinite forms, so that some aj, j > n, can be

negative, which implies destabilization of some of the higer modes.

Yet, the solution (53a) cannot guarantee that all the components of h

17



are positive for any choice of a. It follows that in direct feedback

control the poles cannot be placed arbitrarily. This fact can be ex-

plained easily if we recognize that direct feedback is a special type of

control in which a given actuator force depends only on the state at the

same location, as expressed by Eqs. (38). As a result, the gain matrix

contains no cross-products. The zero entries in the gain matrix can be

regarded as constraints on the control, limiting the freedom to choose

the poles. Hence, direct feedback control and pole allocation are

incompatible.

It must be stressed that the difficulties encountered above do not

exist when the control gains are selected first and the closed-loop

poles are computed subsequently, so that the problem lies not with

direct feedback control but with pole allocation used in conjunction

with direct feedback to control a reduced number of modes.

The question remains as to whether the incompatibility between

direct feedback and pole allocation is caused by the perturbation

technique or is more endemic in nature. We address this question later

in this paper.

9. SECOND-ORDER PERTURBATION EFFECTS

The analysis of Sec. 8 was based on linear approximation. In

reality, the poles are likely to differ from the ones based on the

first-order approximaton, but the question is whether the difference is

significant. To explore this question, we turn to the second-order

perturbation in the closed-loop poles. It can be shown that the second-

order perturbation in the eigenvalues has the form (Ref. 8)

[18



CO (vokAlUoj) (vojAlUok)

2j k=1 XOJ - XOk

!1 e kHe + -eGe.)( - ew .HeK + e, T Gek)
k=T kj T i T

j 1,2,...;j * k (54)

so that

e_ 1 eTHej.e2TGe + L eTHeeTGe

Rex e 1H(e k " .k ~. e.e~e~
I 2j 4 k=1 k wj wk -k Jj

-Ihkjhjk __J kk ), j = 1,2,...;j * k (55a)
4k=1 wk -Jw j Wj jkgk)

1m X2  I (eTHe -2THek 1 eT e.eTGe)
2j 4k=1 wk - j J-k wjwk _k -i _ k)

4 =1w (h kJh jk wjk kjgjk)' j = 1,29,... ; j * k (55b)

From Eqs. (55a), it appears that some Re x2j can be positive. Because

Re x2j involves only off-diagonal entries of the modal gain matrices G

and H, however, it is not likely to exceed a. in magnitude, so that in3

general stability is not really threatened. Moreover, if the control

does not involve displacement feedback, then all Re x2j are zero.

Hence, a second-order perturbation solution is not expected to be

significantly different from the first-order solution.

A similar analysis can be carried out in conjunction with Eqs. (55b).

For. positive definite structures, such an analysis is not very signifi-

cant, as it involves only the imaginary part of the closed-loop poles,

which does not affect the structure stability. For positive semidefi-

nite systems, however, the open-loop poles associated with the rigid-

body modes are zero, so that the rigid-body modes are not controllable

19
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with velocity feedback alone. Still, because Eqs. (55b) are concerned

only with the imaginary part of the eigenvalues, the conclusion involving

the nature of the second-order perturbation solution remains the same.

From the above discussion, we must conclude that the incompati-

bility between direct feedback control and pole placment for control of

distributed structures has deeper roots and is not merely caused by the

perturbation approach.

10. NUMERICAL EXAMPLE

Let us consider the problem of controlling the cantilever beam

shown in Fig. 1 by means of three equally-spaced actuators, xi = iL/3

(i = 1,2,3). The eigenfunctions are given by (Ref. 1)

sin rL - sinh Br L

r(X) =Ar[COS Brx-cosh BrX+ Cos arL + cosh BrL (sin BrX - sinh BrX),

r = 1,2,... (56)

where BrL are the roots of the characteristic equation cos BrL cosh BrL

-1. Normalizing the eigenfunctions so that f m02 dx = 1, we obtain

Al = 0.99803 m-11 2 , A2 = 0.99803 m
-1/2 , A3 = 0.99802 m

- 1/2 , A4 = 1.0230

m-112 , A5 = 1.0177 m-1/2, A6 = 1.0143 m
- 1/2, ... Moreover, the roots

of the characteristic equation are B1L = 1.87510, a2 L = 4.69409,

83L = 7.85476, s4L = 10.99550, a5L = 14.13720, B6L = 17.27879, ..., and

note that as the mode number increases the roots approach odd multiples

of n/2.

Letting r = 3 and using Eq. (50b), we obtain the matrix

0.1092 0.1192 - 10 0.3984 x 10

B m-1  0.1385 x 10 0.7119 0.3984 - 10 (57)

0.2076 x 10 0.1651 x 10 0.3984 1
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so that, from Eq. (53a), we obtain the control gains

h, = (-1.2274 aI + 0.6000 a2 + 0.6276 a3)m

h 2 = (0.9036 a, - 2.5720 a2 + 1.6686 a3)m (58)

h3 = (0.2654 a, + 0.7530 a2 - 0.5164 a3)m

It is clear that, because the gains must be positive, the poles cannot

be placed arbitrarily. We recall that al, a2 and a3 must also be posi-

tive. To develop a feel for the restrictions on the pole placement, let

us imagine a three-dimensional space defined by al, a2 and a3. The pole

shifts must be such that al > 0, a2 > 0 and a3 > 0, which restricts the

placement to the positive one eighth of the three-dimensional space.

Then, we consider a typical equation from the set (58) and write it in

the form

h = aaI + b 2 + ca3  (59)

For h = 0, Eq. (59) represents a plane through the origin of the three-

dimensional space al, 02, a3. Hence, the inequality h > 0 implies that

the acceptable points lie in one half of the space. Denoting by So the

space defined by aI > 0, a 2 > 0 and a3 > 0 and by S1 the space

corresponding to h > 0, we conclude that the closed-loop poles must be

such that al, a2 and a3 lie in the intersection of So and Si. In our

case, there are three inequalities, hi > 0 (i = 1,2,3), to be satisfied.

Denoti,ng the associated spaces by Si (i = 1,2,3), we conclude that a1

a2 and a3 must lie in the intersection of the spaces So , S1, S2 and

$3.. This intersection defines a cone with the vertex at the origin of

the space al, a2 , a3 (Fig. 2). Whereas this region may provide many

choices, it is obvious that a choice of aij__ 2 and a3 cannot be made

arbitrarily. In fact, it can be verified by inspecting Eqs. (58) that

it is very easy to choose values of a,, a2 and a3 such that hl, h2 , or
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h3 becomes negative. The reason for this is that the cone has a narrow

base. For values of a1, a2 and a3 corresponding to points lying outside

the cone, the first three modes are asymptotically stable, but some of

the higher modes are likely to be destablized.

As an illustration of the case in which arbitrarily chosen poles

destabilize the higher modes, let us consider the shifts in the first

three poles

01 = 3a, a 2 = 2a, a3 = a (60)

Inserting Eqs. (60) into Eqs. (58), we obtain the control gains

hI = -1.8546 am, h2 = -0.7646 am, h3 = 1.7858 am (61)

To determine the shift in the poles 4,5 and 6, we refer to Eq. (50b) and

compute

b41= 0.1605 m- , b42  0.1405 m-I, b43 = 1.046 m-I

b 51= 1.017 m- 1, b52 = 1.0361 m-1  (62)

b61= 1.911 m-1, b62 = 1.920 m-1, b63 = 1.029 m -1

Then, inserting Eqs. (61) and (62) into Eqs. (51a), we obtain

a4 = 2.9257 a, a5 = -1.6563 a, a6 = -6.3490 a (63)

so that modes 5 and 6 are destablized by the choice (60).

One suitable choice, i.e. one lying inside the cone, is that in

which the shifts in the first three poles are

'a = a, a2 = 2a, a 3 = 3a (64)

In this case, the control gains become

Sh 1 = 1.8551 am, h2  0.7651 am, h3 = 0.2223 am (65)

Because hi > 0 (i = 1,2,3), it follows from Eqs. (51a) that all the

expressions on the left side represent positive definite quadratic

forms, so that all the closed-loop poles are shifted to the left of the

imaginary axis. Inserting Eqs. (64) and (65) into Eqs. (51a), we obtain

22



a4 = 0.3190 a , a5 = 1.4547 a a6  2.6212 a (66)

indicating that now the modes 4, 5 and 6 are damped adequately in

comparison to the first three modes.

It will prove of interest to examine the accuracy of the pole-

placement technique based on the perturbation scheme. To this end, we

propose to solve the closed-loop eigenvalue problem for the successful

choice, i.e., for the case in which the gains are given by Eqs. (65).

Because the solution of the eigenvalue problem is strictly a numerical

problem, we must assign values to the system parameters. For

convenience, we choose a = 1, m = 1, El = 1, L = 1, where El is the

bending stiffness. Using Eqs. (41b), in conjunction with the gains

given by Eqs. (65), we obtain

2.0000 0.5407 0.6956 0.1049 0.6833 -2.4547
4.0000 1.4311 1.5707 -1.9965 -3.4627

H = 6.0000 0.2487 -3.2446 -2.7830 (67)
0.6379 -0.6891 -1.1943

symm. 2.9093 1.2780
5.2424

On the other hand, because we are only using velocity feedback, G = 0.

Moreover, the matrix of natural frequencies is

= diag[3.516 22.034 61.697 120.901 199.860 298.5571 (68)

The eigensolution was obtained by truncating A to a 44, a 5x5

and a 6.6 matrix. The corresponding closed-loop eigenvalues are dis-

played in Table I. Comparing the values in Eqs. (64) and (66) with the

corresponding ones in'Table I, we conclude that the results obtained by

the perturbation approach are accurate to the fourth significant figure.

It is also easy to verify that truncation of the matrix A does not

affect the eigenvalues materially. Hence, the perturbation approach to

the computation of the control gains for pole allocation in conjunction
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with direct feedback control gives sufficiently accurate results, at

least in this particular example.

11. CONCLUSIONS

Control of distributed structures requires distributed actuators

and sensors. Practical considerations dictate that control implemen-

tation be carried out by means of discrete actuators and sensors.

Moreover, it is impossible to control or estimate the entire infinity of

modes, so that control must be limited to a finite number of modes.

Problems of modal control and estimation remain when the natural

frequencies are closely spaced, as is often the case with two- and

three-dimensional structures.

One approach not requiring modal state estimaton is direct feedback

control, in which an actuator at a given point of a structure generates

a force input depending on the sensor output at the same point. For

linear control, the gain matrix consists of two diagonal submatrices.

The question remains as to how to produce the control gains. Two widely

used techniques are pole allocation and optimal control. The diagonal

nature of the gain matrix characterizing direct feedback control is

likely to cause difficulties.

In the pole allocation method, the closed-loop poles are selected

first and the gains matching these poles are computed subsequently.

There are two factors that may limit the freedom to choose closed-loop

poles in direct feedback. In the first place, the gain matrix has a

special nature, characterized by the off-diagonal entries being equal to

zero, which can be intepreted as placing constraints on the gains. In

the second place, the control gains must be such that the uncontrolled
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modes are not destabilized. We recall that for a distributed structure

there are always uncontrolled modes.

This paper develops a perturbation approach to the computation of

control gains corresponding to given closed-loop poles, whereby in the

first approximation the problem reduces to the solution of linear

algebraic equations for the control gains. The approach reveals an

inherent difficulty in the use of pole placement in conjunction with

direct feedback control. In particular, whereas in computing gains for

a discrete system in which all the modes are controlled the problem can

be regarded as solved provided controllability is satisfied, here the

gains are constrained by the requirement that the higher modes not be

destabilized. This can be guaranteed by requiring that all the gains be

positive. Hence, physical considerations dictate that the only admis-

sible solutions of the algebraic equations for the control gains are

those in which all the components of the solution vector are positive.

Because this cannot be guaranteed for any preselected closed-loop poles,

it follows that the closed-loop poles cannot be chosen arbitrarily. If

*we envision a space defined by the real part of the closed-loop poles,

then the admissible controls lie in a certain cone-shaped subregion of

constraint of that space.

Tle question can be raised as to whether it is possible to draw

such sweeping conclusions from a first-order perturbation analysis. The

answer must be affirmative. Indeed, for small real parts of the closed-

loop poles, the first-order perturbation yields accurate results. As

the real parts increase in magnitude, the constraints on the control

gains remain, so that the nature of the problem does not change. The

likely outcome of a higher-order perturbation is to affect the bounda-
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ries of the cone of constraint, in the sense that the boundaries becom

curved surfaces tangent to the hyperplanes of constraint at the origin,

but cannot negate the existence of such subdomains of constraint. It

should be pointed out that, in the absence of displacement feedback, a

second-order perturbation does not affect the real parts of the eigen-

values.

The ideas presented in this paper are demonstrated via a numerical

example in which an attempt is made to control a cantilever beam by

means of three point actuators while placing three poles. Placing the

poles so that the real parts lie outisde the cone of constraint yields

instability, thus showing that poles cannot be placed arbitrarily. On

the other hand, placing the poles so that the real parts lie inside the

cone yields stability. Then, using the computed gains to generate the

matrix of coefficients A, the closed-loop eigenvalue problem corres-

ponding to the stable case is solved "exactly," i.e., without the use of

a perturbation analysis. The first six computed eigenvalues agree to

the fourth significant figure with those achieved by the perturbation

approach to pole placement.
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TABLE I - Closed-Loop Eigenvalues from Truncated A

A is 4x4 A is 5.5 A is 6.6

r Re x r Im Xr Re x r Im Xr Re x r Im xr

1 -1.00068 ± 3.37175 -1.00071 ± 3.37173 -1.00075 ± 3.37175

2 -2.00108 ±21.94475 -2.00113 ±21.94574 -2.00141 ±21.94696

3 -2.99873 ±61.59982 -2.99991 ±61.60840 -3.00046 ±61.61201

4 -0.31851 ±120.88660 -0.31857 ±120.88730 -0.31889 ±120.88810

5 ± -1.45320 ±199.80580 -1.45360 ±199.80940

6 -2.61968 ±298.48120
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